\(\int \frac {x^{11/2}}{(b x^2+c x^4)^2} \, dx\) [331]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 218 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}-\frac {\log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}} \]

[Out]

-1/8*arctan(1-c^(1/4)*2^(1/2)*x^(1/2)/b^(1/4))/b^(3/4)/c^(5/4)*2^(1/2)+1/8*arctan(1+c^(1/4)*2^(1/2)*x^(1/2)/b^
(1/4))/b^(3/4)/c^(5/4)*2^(1/2)-1/16*ln(b^(1/2)+x*c^(1/2)-b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/b^(3/4)/c^(5/4)*2^(1
/2)+1/16*ln(b^(1/2)+x*c^(1/2)+b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/b^(3/4)/c^(5/4)*2^(1/2)-1/2*x^(1/2)/c/(c*x^2+b)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {1598, 294, 335, 217, 1179, 642, 1176, 631, 210} \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )} \]

[In]

Int[x^(11/2)/(b*x^2 + c*x^4)^2,x]

[Out]

-1/2*Sqrt[x]/(c*(b + c*x^2)) - ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(4*Sqrt[2]*b^(3/4)*c^(5/4)) + Arc
Tan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(4*Sqrt[2]*b^(3/4)*c^(5/4)) - Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)
*Sqrt[x] + Sqrt[c]*x]/(8*Sqrt[2]*b^(3/4)*c^(5/4)) + Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]
/(8*Sqrt[2]*b^(3/4)*c^(5/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1598

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^{3/2}}{\left (b+c x^2\right )^2} \, dx \\ & = -\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}+\frac {\int \frac {1}{\sqrt {x} \left (b+c x^2\right )} \, dx}{4 c} \\ & = -\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}+\frac {\text {Subst}\left (\int \frac {1}{b+c x^4} \, dx,x,\sqrt {x}\right )}{2 c} \\ & = -\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}+\frac {\text {Subst}\left (\int \frac {\sqrt {b}-\sqrt {c} x^2}{b+c x^4} \, dx,x,\sqrt {x}\right )}{4 \sqrt {b} c}+\frac {\text {Subst}\left (\int \frac {\sqrt {b}+\sqrt {c} x^2}{b+c x^4} \, dx,x,\sqrt {x}\right )}{4 \sqrt {b} c} \\ & = -\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}+\frac {\text {Subst}\left (\int \frac {1}{\frac {\sqrt {b}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {b} c^{3/2}}+\frac {\text {Subst}\left (\int \frac {1}{\frac {\sqrt {b}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {b} c^{3/2}}-\frac {\text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{b}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {b}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} b^{3/4} c^{5/4}}-\frac {\text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{b}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {b}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} b^{3/4} c^{5/4}} \\ & = -\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}-\frac {\log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}} \\ & = -\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}-\frac {\log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{3/4} c^{5/4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.58 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {-\frac {4 \sqrt [4]{c} \sqrt {x}}{b+c x^2}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )}{b^{3/4}}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{b^{3/4}}}{8 c^{5/4}} \]

[In]

Integrate[x^(11/2)/(b*x^2 + c*x^4)^2,x]

[Out]

((-4*c^(1/4)*Sqrt[x])/(b + c*x^2) - (Sqrt[2]*ArcTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])])/
b^(3/4) + (Sqrt[2]*ArcTanh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/b^(3/4))/(8*c^(5/4))

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.58

method result size
derivativedivides \(-\frac {\sqrt {x}}{2 c \left (c \,x^{2}+b \right )}+\frac {\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c b}\) \(127\)
default \(-\frac {\sqrt {x}}{2 c \left (c \,x^{2}+b \right )}+\frac {\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c b}\) \(127\)

[In]

int(x^(11/2)/(c*x^4+b*x^2)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*x^(1/2)/c/(c*x^2+b)+1/16/c*(b/c)^(1/4)/b*2^(1/2)*(ln((x+(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2))/(x-(b/c)
^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2)))+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1
/2)-1))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.88 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {{\left (c^{2} x^{2} + b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (-i \, c^{2} x^{2} - i \, b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (i \, b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (i \, c^{2} x^{2} + i \, b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (-i \, b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (c^{2} x^{2} + b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (-b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 4 \, \sqrt {x}}{8 \, {\left (c^{2} x^{2} + b c\right )}} \]

[In]

integrate(x^(11/2)/(c*x^4+b*x^2)^2,x, algorithm="fricas")

[Out]

1/8*((c^2*x^2 + b*c)*(-1/(b^3*c^5))^(1/4)*log(b*c*(-1/(b^3*c^5))^(1/4) + sqrt(x)) - (-I*c^2*x^2 - I*b*c)*(-1/(
b^3*c^5))^(1/4)*log(I*b*c*(-1/(b^3*c^5))^(1/4) + sqrt(x)) - (I*c^2*x^2 + I*b*c)*(-1/(b^3*c^5))^(1/4)*log(-I*b*
c*(-1/(b^3*c^5))^(1/4) + sqrt(x)) - (c^2*x^2 + b*c)*(-1/(b^3*c^5))^(1/4)*log(-b*c*(-1/(b^3*c^5))^(1/4) + sqrt(
x)) - 4*sqrt(x))/(c^2*x^2 + b*c)

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(x**(11/2)/(c*x**4+b*x**2)**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.89 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}}}{16 \, c} - \frac {\sqrt {x}}{2 \, {\left (c^{2} x^{2} + b c\right )}} \]

[In]

integrate(x^(11/2)/(c*x^4+b*x^2)^2,x, algorithm="maxima")

[Out]

1/16*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(
b)*sqrt(sqrt(b)*sqrt(c))) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x))/sqrt(s
qrt(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + sqrt(2)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + s
qrt(b))/(b^(3/4)*c^(1/4)) - sqrt(2)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(3/4)*c^(1/
4)))/c - 1/2*sqrt(x)/(c^2*x^2 + b*c)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.91 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b c^{2}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b c^{2}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b c^{2}} - \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b c^{2}} - \frac {\sqrt {x}}{2 \, {\left (c x^{2} + b\right )} c} \]

[In]

integrate(x^(11/2)/(c*x^4+b*x^2)^2,x, algorithm="giac")

[Out]

1/8*sqrt(2)*(b*c^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b*c^2) + 1/8*sqrt
(2)*(b*c^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b*c^2) + 1/16*sqrt(2)*(b
*c^3)^(1/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b*c^2) - 1/16*sqrt(2)*(b*c^3)^(1/4)*log(-sqrt(2)
*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b*c^2) - 1/2*sqrt(x)/((c*x^2 + b)*c)

Mupad [B] (verification not implemented)

Time = 13.01 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.29 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {\sqrt {x}}{2\,c\,\left (c\,x^2+b\right )}-\frac {\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{3/4}\,c^{5/4}}-\frac {\mathrm {atanh}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{3/4}\,c^{5/4}} \]

[In]

int(x^(11/2)/(b*x^2 + c*x^4)^2,x)

[Out]

- x^(1/2)/(2*c*(b + c*x^2)) - atan((c^(1/4)*x^(1/2))/(-b)^(1/4))/(4*(-b)^(3/4)*c^(5/4)) - atanh((c^(1/4)*x^(1/
2))/(-b)^(1/4))/(4*(-b)^(3/4)*c^(5/4))